L , /\PPROVED FOR p -
assuch Mi¢ o8 1 ' ‘ oy . UBLIC RELEAS™
g s M onams mn g2 PIETAUTION UR i
o Technology ~ Cer ter (11130 (3712528130 '
e
L o DTIC
N VLSI ter 10 No. £43-45) o
June 98!
QO
o
<
é OBJECT -ORIENTED CONCURRENT PROGRAMMING iN CST
Willlar1J Dally a~d Anclrew A. Chien
Abstrict
1
- CST i1 a srogramming language based on Smalltalk-80 that supports concurrency using

locks asynchronous messages, and distributed objects. Distributed objects have their
state Jistributed across many nodes of a machine, but are referred to by a single name.
Distributed objects are capable of processing many messages simultaneously and can
be used to efficlently connect together large collections of objects. They can be used to
construct a number of useful abstractions for concurrency. This paper describes the
CST anguage, gives examples of its use, and discusses an initial implementation. . .., .
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Object-Oriented Concurrent
Programming in CST !

William J. Dally and Andrew A. Chien

Abstract

CST is a programming language based on Smalltaik-80 that
supports concurrency using locks, asynchrooous messages,
and distributed objects. Distributed objects bave their state
distributed acrose many nodes of & machine, but are referred
%o by a single name. Distributed objects are capable of pro-
csssing meay messages simuitaneously and cas be used to
efliciently connect together large collections of objects. They
can be used Lo construct & aumber of useful abetractions for
concurrency. This paper describes the CST langusge, gives
examples of its wes, and discusess an lnitial implementation.

1 Introduction

This peper desczibes CST, aa object-oriented concurrent pro-
grammiag langaage based on Smalltalk-00 [8]. CST adds
thres extensions Lo sequential Smalltalk. First, messages are
asynchronous. Several meseges cas be sect concurrently
without waiting for a reply. Second, several methods may
asccems an object concurrently, locks are provided for coo-
curency costrol. Flnally, CST allows the programmer to
describe distributed objects, objects with a single name but

" distributed mate. They can be used to construct sbetrac-

tioas (or concurrency.
CST is being developed as part of the J-Machine project

"The ressarch desaribed in this pepar wes supperted in past by the
Dufsnse Advensed Ressarch Projosts Ageacsy uader sontrects NOOO1 4.
00-C0837 and N0OO14-88-K-0134, in part by & Notienal Scienee Foun-
dasien Presidentisl Young luvestigator Aweed with tesiching funds
from Gemerai Elostris Corporeiion, sad s part by sa Anslog Devices
Pellowehip,
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Figure 1: A CST program to calculate Fibonacci aumbers
using double recursica.

st MIT (3], (2. The J-Machine is a fine-grain coacurrest
computer. It eficlently exscutes tasks with a grain sise of
10 (nstructions and supports a global virtual sddress space.
This machine requires s programming system that allows
programmers to coacisely describe programs with method-
level concurrency and that facilitates the development of ab-
stractions for concurrency.

Object-orieated programming meets the first of these gnals
byhtndndu.dhdpﬂuhhwpuﬂn& Each ex-
pression implies & message send. Each message invokes s new
process, Each receiveis implicit. The global address space of
object identifiers eliminates the need Lo refer to aode aum-
bers and procmss [Ds. The programmer does not have to
.nsert send and receive statements into the program, Leep
track of process [De, and perform bookkesping to determine
which objects are local and which are remotas.

For example, a CST program? that calculates Fibonacci aum-
bers using double recursion is shown in Figure 1. Nowbem in
the program does the programmer explicitly specify & send
o receive, and no node numbers or peocess [Ds are men-
tioned. Yet, a9 shown in Figure 2 the program exhibits a
groat deal of coacurrency. Making message-passing implldt

An object-oriented language also eacourages locality. Oper-
aticns om aa object happea at Lhe object, oot from a distance

s progrem s ia prefle CST, & diaect 1had bas & Fywias resem
bilag LISP. fafls CIT (4 bas & symax clossr 4o that of Smallialh-90.
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Figure 22 Coacurrency profile of Fibonacci program. The
plet shows the aumber of active tasks during each message
interval.

using » remote process.
CST facilitates the construction of concurrency abetractions

" by providing distributed objects: objects with a single same

whose state ls distributed across the nodes of a concurrent
computer. THe one 0 many naming of distributed objects
along with their ability to process masy messages simuitane-
oucly allows them to eficiently connect together large num-
bers of objects. Distributing the name cf & single distributed
quene to sets of producer aad consumer objects, for exam-
ple, connects maay producers to maay consumers without a

Background

The developmant of Coacurrent Smalitalk was motivated by
dissatisfaction with procass-based coacurrent programming
using sends and receives (7]. Mnyolthcldeumbot-
roa.d fom actor languages [1].

Another laoguage named Concurrent Smalitalk has been de-

. veloped at Keic University in Japan [3). Thie language also

allows message sending to be asynchronoue but does not
include the ability to describe distribated objects.

Outline

mmaumd«aﬁb—mmmmw
meatation. Sectios 2 presents Lue abetract syatax of the
language, describes the primitive types and operations sup-
posted by the languags, and gives & simple exampls. [a Sec-
tiom 3, we describe distributed objucts. We discuss the mech-
aniams provided e addrecs distributed objects aad their con-
stituente as wall s several examples. Section 4 describes an
imOlementation of CST.
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2 Concurrent Smalltalik

Top~-Level Expressions

A CST program coasists of & aumber of Lop-level expressioas.
Top level forms include declarations of program and data as

well se axecutable expressions. Linking of programs (the
resclution from selectors to methods) is done dynamically.

Qeyeexpd 1@ (Tlebal <global-verishbles>) |
(Constant <constant-saner <valuwer) |
(Clase <clase-name> (Couperclasses’)
<lassance~-vars>) |
(Method <clase-tian> (nethod-same>
(¢formals>) (<locals?)
<agpressions’) |

C(expreasion>

Globale and Constants

Globals and constant declaraticas define names in the en-
vircument. These names are visible in all programs, unless
shadowed by a instance, argument, or local variable name.
The global deciaration timply defines the name. Its value re-
mains unbound. The coastant declaration defines the name
and binds the name to the specitied value.

Classes

Objects are defined by specifying classes. Objects of a par-
ticular class have the same instance variables and understand.
the same messages. A class may inherit variables aad meth-
ods from ooe or more supcrciassen. For example:

(clase traasister (circuitelement)
source draim gute type size stata)

Cefines a class, transistor, that inherita the propertigs of
class circuitelement and adds six instance variables. This
means that methods for the clses traneistor can access all
the instance variables of class circuitelemsas as well as
tuose defined in their own ciass definition. Methods defined
for cless circuiteleseat are also inherited. Instance vari-
shlas iz. the class detwiti~n may hide (shadow) thoew defined
in the superclassey if tLey have the same name. The same
kind of shadowing is allowed for selectors (mathod names).

Moethods

The bebavior of a class of objects is defined ia tarms of the
messages they understand. For each message, a method is
executed. That execution may sead additional messages,
modify the object state, modify the object bebavioe, and
create new objects.

Methods consint of a beader and a body. The header specifies
class, selector, arguments, and locals. The body coasista of



one of more expressions. For example:

(method traasistor vgs () ()
(rwly (- (voltage gats) (voltage source))))

defines o method for class transistor with selector vgs.
The two empty lists indicata that there are no arguments and
0o local variables. The keywosdmreply sends the result of the
following expression back to the sender of the vgs maessage.
In the abesnce of & reply keyword, the method replies with
the valuve of the last expression. [f the programmer wishes to
suppress the reply, be can use the (exit) form whick causcs
the method to terminate without a reply.

Messages are sent implicitly, Every expression coaceptually
involves sending s message to an object. Of course, com-
mounly occurring special cases, like adding two local inte-
gers, will be optimized to eliminate the send. For example,
(voltage gate), sends the mossage voltage to gate. (+ o
b) sends tho message ¢ with argument b to object a. If a
and b are both local {ntegers, this can be optimized into a
single add instructioa.

Each expression consists of a selector, a receiver, and zero oc
moce arguments. [dentifiers must be one of: constaat, global
variable, argument, local variable, or instance variable. For
example, in the method below,

(dlobal Vv)
(Nethod Transister fee (vz) (vy)
(reply (frob vz gete vy Ve 8)))

The sxpression (£red vz gute vy vt §) coosiets of a se-
lector, freb, & recsiver vz and four srguments: gate, vy,
¥t, and 8. [o the sending method, foe, £rob and § are con-
sasts, vx is an argument, gate is an instance variable, vy is
a local varisble, and V¢ is a global.

Subexpressions may be executed coucurrestly and are se-

quenced oaly by data dependence. For example in the fol-
lowing expression .

(~ (voltage gate) (voltage somrce))

‘The two vultage mewages will be sent concurrently wnd the
- message will be sent when both replies have bem received.
The only way to serialise subexpression evaluation is to as-
sign intermediate results to local variables.

A complete list of CST expressions is shown below:

Coxpsd> e Compre
(‘w) L
(aame> |
(<selecter> (receiver-exp® <argemest-sgp’e) |
(send «calector-expd <(recaiver-erp>
<argumeat-expre) |
(value <azp>) |
(set <name> <axp?) !
(caet <name> <exp?) |
(meg <aode> <selectar> <receiver> <actuals’) |
(forvard (comtinsuation> <selector>
<recoives> carge?) |
(roply <exp?) |
(block (<tormals>) (<locals>) <exps?) |
(12 <exp> <axp> <axp>) |
(vegin <expe?) |
(exit)

Run Time Environment

As in other dynamically linked systems such as Smalltalk and
Lisp, we can think of much of the run time envirooment m
programs that are “preloaded” into the environment before
the user program Is executed. The primitive classes and
operations listed below are treatod as such.

Atomis classes: INTRGER, SIBOL, FLUAT, BGOLEAR
Compoeite types: arrays
Aritimesic (imteger and fless): o = ¢/
uis saz wed Tem C( > ® (o > |
Beslean: if ad o M8
Symbel: oq
ArTay Wccess: as av.put
Distridused Ohject: co
Nise: new tonch

Masy primitive operstions are defined oa integers, Soazs,
booleans, and symbols. These t ypical operations are found in
many langusges. The loss iatuitive primitives are for arrays -
arrays are allocated ou singie nodes (this does not prevent un

" from building distributed arrays using distributed objects).

Values are written using the at.put message and read using
the at message. nev is a predefined message which allows us
to create objects.

Touch simply allows us to require synchronisation. Touch
requires that its arguments be available for reading. This
allows us to coatrol where suspeasion can occur.

An Example Program

This program integrates a function aver the specified inter-
val using a trapesoidal approximation in each subinterval.
The number of times the intarval is subdivided and hence
the sublaterval rise is determined by epsilon, the maximmm
interval allowed to be approximated as a trapesoid.
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Figure 3: A CST program to integrate a function using dou-
ble recursioa.

The sy=favirite=functien and iasegrase methods are
both declared for the class of floats. y-favorite~function
takes oaly one parameter, the value for which we want o
colculate the functioa. This argumaent is the implicit self
argument, as the float of interest receives the fuaction selec-
tor and calculates the value of the function. Integrate takes
the low poist of the interval (salf), the high poiat of the
Interval (dpeint), the interval sive (epeilen), and the selec-
tor for the fnaction (sel) as arguments. The concurrency
peodile for sa oxecution of iategrate is gives ia Figure 4.
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Figure 4: Coscurrency profile of Integrate program. The
plot shows the sumber of active tasks during each message
imtervel.

The spawsing of parallel cxmputations occurs at the two suc-
cssive ¢cset opersiions. This comstruct allows tle method

emscution Vo procesd without waiting for & response to the

integrate message. We could have produced similas bebav. -
lor without the use of the locals subistl asd subist2. We

introduce the locals to illustrate the cset construct. The re-

sults (rom the coacwrrent sends get written iato subist] and

subint2. The secd operstion in the last line of the method

(send of the + selector) requires both subinterval values sad

thus causes the metbod exscution to suspend uatil both re-

sults have been returned.’

3 Distributed Objects

neously. However, ordinary objects can caly process a single

ot & tims. CST relaxes this testriction with Dis-
tributed objects (DOs). Distributed oblects are made up of
multiple representatives (constituent objects) that can each
accept messages independently. The distributed object has
a same (Distributed object ID or DID) and all other cbjects
send messages to this name whea they wish to use the DO.

" Messages sent to the DO are received by ose and ouly cne

constitueat object (CO). Which constitusnt receives the mes-
sage is left unspecified in the language. A clever implemeo-
tation might cend the messages to the ciosest constituent
whereas & simpler implementation might send the

to a random coastituent. The state of distributed object
is typically distributed over the coustituents so response to
aa exterzal requast often requires the pessing of messages
amougst the comstilusats before the reply to the request is
vint. No lockiag is performed ou the distributed chject as
s whole. This rheans that the programmer must ensure the
coasistency of the distributed object. .

Support for Distributed Objects

CST includes two constructs to support distributed objects.
Foe DO creation, we add an arguomnt for the new selector
- the number of constituents uasired lu this DO. [a order
to pass pessages within the object, each constituent object
must be able to address each of the other constituents. This
implemerted with the special selector co. Each distributed
object can ‘we this selector, the special instance varisble
group (a reference to the DO), and an index to address »- -
canstituens. For example, (ce growp §) refers to the _th
constituent of a distributed object. Each comstitusnt also
has accoss to its own index and the oumber of constituents
in tbe entire distributed object. Thus a description of a dis-
tributed object might look something like the example shown
in Figure §.

[o the example of the distributed array, we would create a u»-
thle array with two steps. First we coastruc: the distributed
object using the aew form. The example ia Figure 3 creates
a distributed cbject with 238 coustituests. Afer the DO
is crvated, we mmet initialise in o way that is appropriate
for the distributed array. We do 50 Uy sendiag it aa fait

SThis behavier is analogons to “Yetmrer” (0], howawer, this lsmited
wegs of \ham adows w (o impismest them wmore oficiamly.




maessage (also defined in Figure 3 This initialization sets
each constituent up with an private array of the appropriate
number of elements. For example, if we wanted a distarray
of 512 elements, in this case esch coastituent wouid have a
privats array of two elements. This initialization is done in
& tres recursive {ashina and therefore takes O(/g(n)) tima.

The mapping of the distarray elements onto the private ar-
tays is dooe by the at and as.pus methods. Each con-
tituent is responsible for a co 16 range of the distar-
ray elements. Any requests received by a constituent are first
checked to ses if they are within the local CO's jurisdiction.
If they are not, they are {ormarded to the appropriate CO.
If they are, we handle the requert locally. This is & particu-
lariy simple example because each cnnstitueat is wholly re-
spoasible for his subrange and need not negotiate with ocher
constituents before modifying his local state.
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Figure 3: A Distributed Array Example

Other Diatributed Object Examples

Distributed objects are of great utility in building large ob-
jocta on & fine grein machines. [ the J-machine, we restrict
ordinary objects to it within the memory of single node.

This places & sirict limit on object sise. With distnbuted
objects, we oaly require that a constituent of the DO fit on
a single node. Some use.ul examples for distributed objects
are dictionaries, distributed arrays, sets, <'1eues, aad prionty
queuss.

4 Implementation

A simple programmiag eaviroament for CST has been im-
plemented oa the a Symbolics 3600 system. This eaviron-
meat includes s compiler (which does incremeatal compi-
lation), a simulator, and plotting facilities. The compiler
accepts & Prefis CST program and produces intermediate
codes (lcodes). These lcodes can be executed ou the sim-
ulator yielding concurrency profiles, processor utilizatious,
dyuamic [code mixes, and various other kinds of informa-
tion. The [codea can be used as o sourcs {or various compiler
back-ends. One such back-end, curreatly under development
in the Moncurrent VLSI Architecture Group st MIT, targets
the Mossage Driven Processor’s (3] instrurtion set.

Compiler

The [codes generated by the compiler are similas to the byte-
codes of the Smalltalk-80 system. However, we only require
eleven different lcodes, {ar fewer than in the Smalitalk-80 sys-
tem. [codes are significastly higher level than instructions
in a typical machine. Typical [codes are MOVE, SEND,
JUMP, REPLY, FALSEJUMP, etc. In Figure 6, we give the
lcodes for the Fiboascd routine \n Figure 1.

One can see that the lcodes clearly reflect the structure of
the CST program. The portion preceding (label 0) is cloarly
identiflable ss the or=a'iticoal test and oce of its arms. The
remaloder of the Icodes are the other arm of the conditional.

The compiler performs two optimisations specific to concur-
rent programs: tail forwarding aad :ode reordering. Tail

(send (teamp 0) < self (comst 2))
(falsejump (temp 0) 0)

(mave (tesp 1) (comst 1))

(zroply (temp 1))

(label 0)

(caond (temp 2) - self (comss 1))
(csend (tesmp 3) £1id (temp 2))
(coond (temp 4) = self (comss 2))
(csend (temp §) £1d (temp 4))
(send (temp 1) ¢ (temp I3) (temp 3))
(reply (camp 1))

Figure §: !ntermediats Codes for b program.

forwarding is similar o tall recursics. Whea the value re
turned {rom a method is the reply from & called method,



the reply 1s sbort-circuited by haviag the called method re-
ply directly to the original sender. Code reordering moves
message sends sarlier in a code block to generate additional
concurreacy.

Simulator

The simulator interprets lcodo’pﬂpum output by the com.
piler. However, CST programs require several kinds of run
time support (hardware and low level OS services) in order
to run. Secrvices required by CST (and provided by the sim-
ulator) (nclude implementation of virtual address space (ID
t» node translatioa, [D to segment ¢ ddress traaslation), syn.
chronization support (dispatch on message arrival aad trape
on futures), addressing support for distributed objects, und
primitive object placement and migration support. The ker-
uel of the operating system for the J-machine, JOSS (9} pro-
vi.lee similar services.

Th ) simu!ator allows us to study the macroscopic behavior of
CST programs. 'or example, the concurrency profile in Fig-
ure 2 was generated by the Icode simulator. Such a system
enables us to study issues of placement, concurrency con-
trol, partitioning and other resource management problems
without worrying about the irrelevant architectural detail.

5 Conclusion

Ia this paper, we have presentad & new language, Concur-
rent Imalltalk, that is designed for coacurrency. Specific
wpport for comcurrency includes locks, distributed objects,
asd asynchonows rosssage passing.

Distributed Ohjects repressnt a significant innovatioa in pro-
gramming parallel machines. We refer to the ccastituents o
a distributed object with a singls name, but tha implemen-
tation of the object is with many constitaents. This dif-
ferent perspactive allows easy use of distributed object by
outsids srograms while allowing the exploitatiou of internal
distributed object concurrency.

We have described an implemantation of a CST system. This
programming environment includes a compiler, simulator,
and statistics collection paciage. This set of tools allows
us to experiment with now constructs and implementation
techniques for the language.

Coancurreat Smalitalk requires significaat rua time support
in order to executn efficiently. Such support has bewn implo-
mented in the simiator and in JOS7, the operating tystem
ot the Jnvchine
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